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Abstrad. The question of quantization of two-dimensional mappings representing the 
discrete PainlevC equations and their autonomous limits is examined. We show that for 
all these mappings it is possible to find a consistent quantization scheme, inspired from 
the commutation relations encountered in quantum groups. In the autonomous case we 
show that the classical invariant survives after the quantization, provided one introduces 
adequate quantum corrections in both the mapping and the invariant. Far the discrete 
PainlevC equations themselves the integrability constraints are so stringent that they rufice 
even for the quantized case. In all the known cases the classical Lax pain can be transcribed 
as quantal ones requiring only a (straightforward) choice of ordering for some of them. 

1. Introduction 

Modelling of physical systems proceeds often through discretization. Instead of con- 
sidering continuous space and time variables one discretizes both; then the equations 
of motion become difference equations. This approach is interesting on several levels. 
Discrete systems lend themselves, by construction, to simulations: the lattice- or 
mapping-type equations of motion naturally provide integration schemes. Moreover 
space and time are treated on an equal footing. Lattice models are fundamental in the 
sense that they contain whole families of continuous systems that are obtained through 
the appropriate continuous limits. 

The study of the integrability of discrete systems has, curiously, been neglected 
until very recently. While discrete systems have been used extensively for the under- 
standing of chaos and its mechanisms, their integrability has barely been touched 
upon. The situation is now rapidly changing 113. From the picture that emerges from 
recent studies one can assert that all the types of ‘continuous’ integrability have their 
‘discrete’ counterpart. In [2], Quispel and collaborators have exhibited a large family 
of second-order mappings that possess an integral of motion and are the discrete 
analogues of elliptic functions. Systems linearizable through the discrete equivalent of 
Cole-Hopf transformations have been studied in [3]. But the most important result 
has been the discovery of systems that possess Lax pairs [4,5]. These discrete equations 
are obtained as a compatibility condition for a linear system, through the discrete 
analogue of the Zakharov-Shabat procedure. 

Several multidimensional integrable lattices but also one-dimensional, non- 
autonomous mappings have been obtained in this way. The latter turned out to be the 
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discrete equivalents to the Painlev6 equations. The first examples of such mappings 
d-PI, d-PI, have been discovered in connection with two-dimensional quantum gravity 
[6], as well as similarity reductions of differential difference [4] or partial difference 
[SI equations, while the higher Painlevt equations, PI,, to Pv, were discovered using 
the discrete analogue of the PainlevC method: the singularity confinement procedure 
introduced in [7]. To date Lax pairs are known for d-PI of which three different forms 
exist, d-P,, and d-PI,, [81. The Lax pair in the present context must be thought of as 
a pair of matrices, say L, and M,, depending on a spectral parameter, h. The 
compatibility condition reads, for example: h dMJdh = L.+,M. - M.L.. One interest- 
ing way to interpret this relation is, according to  Novikov [9], as a quantization 
condition for the spectral curve. Thus the de-autonomization process is, in some formal 
sense, a first kind of quantization. 

Another, more direct, kind of quantization is that which operates on the variables 
of the discrete system itseif. instead oi e-numbers, the mapping variabies become 
non-commuting operators. Recent studies have been devoted to this subject. In [IO] 
the quantum integrability of a family of (classically) integrable lattices has been related 
to the existence of a well-defined quantum Yang-Baxter structure, which provides a 
complete set of commuting operators. A more direct approach to quantum integrability 
has been used in [ll] concerning a mapping of the Quispel family. Starting from a 

are operators satisfying canonical relations [x, y ]  = ih, it has been shown that it is 
possible to choose the right ordering for the classical invariant for it to stay invariant 
even in the quantum case. 

What has not been attempted before is to combine the two ‘quantizations’: 
deautonomization and real-space quantization. Since the first procedure, for second- 
order mappings (starting from the Quispel family), leads to discrete Painlevd equations, 
one expects with this method to find their quantum versions. 

The present study is devoted to  the problem of completing the quantization of the 
Quispel mappings and obtaining the expressions for the quantum discrete Painlev6 
equations. As we will show, for the latter, the integrability constraints at the 
deautonomization level are so strong that they suffice in order io ensure integrability 

fundamental level: that of the choice of the quantization prescription. In fact, the 
quantization rule must be consistent with the equations of motion and for most cases 
the Heisenherg prescription, [x, y ]  = ih, turns out to be inadequate. This problem will 
be the object of the next section. 

parai-ileirizaiion ofthe latter pas~Uia~~ng  that the mapping variabies iX, yj  

even 3ft.r r.r?!-spr?Ge :I?aE!izEtia.n.. wnwaver, Ennthsr prnh!.m Eppclrs r?! r? more 

2. The choice of the quantization 

The type of quantization everybody is familiar with is that of Hamiltonian systems. 
In this case one starts with a pair of conjugate variables, say p ,  q, the Poisson bracket 
of which is just { p .  q }  = 1, and then chooses a quantization scheme among all those 
that lead to operators p ,  q with commutator [ p ,  q ]  = ih. The Weyl prescription is 
perhaps the most popular among these ordering rules although not the only one. In 
the context of mappings there is no a priori physical interpretation of the mapping 
variables. This means that we do not have the Poisson bracket that may serve as a 
guide, but on the other hand, we are not bound any more by Heisenberg-type commuta- 
tion relations. In  fact, the latter may prove inconsistent for most mappings. Let us 
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illustrate this point for the Quispel mapping. Its general form reads 

The functions f and g are quartic polynomials involving 18 parameters ai, pi, yi,  St, 
E ( ,  l,, K{, hi,  pi for i =  1 ,2 .  The mapping ( l a ,  b )  is integrable in the sense that it 
possesses an invariant that can be obtained by 

(a,+ Kaz)x2yz+ (0, +KpZ)xzy+(  y1 + Ky, )x2+(6 ,  +KSz)xy2+ ( E ,  + KE,)XY 

+ (51 + KCz)X+(Ki f KK2)Y2+ ( A I  f KAdY + ( P I +  KP2) =o. ( 2 )  

The case f3 = g, = 0 was quantized in [I I ]  under the quantization rule [x ,  y ]  = 1. Let 
us show that this rule is inconsistent with the general mapping by studying the particular 
caseh = g, = 0. Indeed, assuming [x, y ]  = 1 at every iteration, we would expect [y,  x‘] = 1 
at the next step. Using the explicit form of the mapping for fz = g, = 0 we find readily 
that this is impossible unless x’=  x, an obviously absurd constraint. 

Still a solution to the problem exists, provided one uses the techniques of non- 
commutative geometry [12]. In order to lend a physical meaning to the ‘quantum line’ 
[ 131 it has been suggested [ 141 that, at the scale of the Planck length, non-Archimedean 
geometry must be introduced. Thus the spacetime coordinates do not commute but, 
rather, obey Weyl-type commutation relations 

xjx; = qx;xi. (3) 
In order to cover the case of mappings of type ( I )  we introduce the general commutation 
relation 

xy = qyx+ A x  + py + Y. 

xy = qyx + A(x  + y ) + v. 

(4) 

( 5 )  

Two cases can be distinguished, q = 1 and q # I .  In the latter a translation of the 
variables can always reduce the commutation relation to either of the forms xy = qyx + Y 
or xy=  qyx+A(x+y) .  ‘Heisenberg-type’ commutation is obtained for q = 1 and 
moreover A = 0, while ‘Weyl-type’ commutation is obtained for q # 1 and v = 0. In fact 
all kinds of commutations ( 5 )  can be related to the discrete Painlev6 equations. The 
analysis can be performed at the autonomous level since the n-dependence of the 
coefficients cannot influence the commutation properties of the mapping variables. 

We use the Quispel map as a starting point since all the known discrete PainlevC 
equations belong to this family at the autonomous limit. Starting from (1) we rewrite 
it in a more symmetric form 

Through scaling this relation can be always reduced to 

x % ( Y ) x - x % ( Y ) - f 2 ( Y ) X + f i ( Y )  = o  ( 6 a )  

y’g,(x’)y -y’gz(x’) -gz(x’)Y + Pl(X’) =o. ( 6 6 )  

Let us work with equation ( 6 a ) .  Multiplying by y on the left and right we apply the 
commutation relation ( 5 )  and its iterated yx’ = qx’y + A ( x ’ + y )  + U. Using the commuta- 
tion relations we bring all x’s to the left and all xs to the right. Subtracting, only terms 



6422 B Grammaticos et a1 

linear either in x or x‘ remain. We thus obtain the following condition for the vanishing 
of the terms proportional to x and x’: 

A f z  + ~ f 3  + Y [ ( q  - l)f2+ A f J  = 0. (7) 

A similar expression involving gs is obtained from (66). Before making further use of 
the mapping consistency condition, let us specify the relations between the parameters 
of the Quispel map in order to obtain the discrete Painlevt equations. The latter are 
symmetric (f= g) mappings for staggered variables: = x’, 
~ 2 ~ + ~ = y ’ .  As we have explained in [IS] the Painlevt mappings PI to Pv are obtained 
for the ratio p =f3 / (y f3- - fz ) ,  coinciding with the term that multiplies j 2 ,  in the con- 
tinuous equation. We thus have p = 0, (f, = 0)  for d-PI and d-P,,, p = I/y, (f2 = 0) for 

d-Pv. Thus, for d-PI and d-PII, the compatible quantization condition is of Heisenberg 
type, i.e. q = 1, A = 0, U # 0. For d-Pll, we have q # 0 and A = U = 0. For d-Plv and d-Pv 
we substitute the relation between fZ, f, in (7) and we find q = 0, v = 0 and A =free 
for d-P,,, and q = free # 1, Y = 0 but A = (1  - 4 ) / 2 .  Thus a consistent commutation 
relation exists for everyone of the known discrete Painlevt equations. 

One remark must be made at this point concerning the coalescence cascade of the 
discrete Painlevt equations. As is well known, the continuous Painlev6 equations are 
related through the appropriate limits of dependent and independent quantities in the 
scheme d-Pv+ {d-Plv, d-P,,,} + d-PI, + d-PI. Thus the ‘lower’ Painlevt equations can be 
deduced from the ‘higher’ ones. We have shown in [15] that analogous relations exist 
for the discrete Painlev6 equations. The quantization must be compatible with the 
coalescence procedure, in order to be consistent. For example, we obtain d-P,,(X) 
from d-Plll(x) through the limit x = 1 + 6X for 6 + 0. Starting from the commutation 
relation xy = qyx for d-PllI and putting q = 1 + S2u we find, at the limit 6 +O: XY = 
YX + U, i.e. precisely the commutation relation for d-PII. In the case of d-P,,(x) to 
d-P,,(X) we have the same relation x =  1+6X. Starting from xy=yx+ U and putting 
U = 6’p we find X Y  = YX+p, as expected. Similarly from d-Plv(x) we obtain d-P,,(X) 
by x = 1 + 6X. Here the commutation reads xy = yx + A(x + y )  and it suffices to take 
A = 6% in order to obtain the commutation for d-PII. The discrete Pv(x) reduces either 
to d-PIII(X) through x = X / S  or to d-Plv(X) through x=SX. Starting with xy= 
qyx+f(l-q)(x+y) we obtain in the first case XY=qYX and in the second (by 
q = 1 -SA): X Y  = YX + A(X + Y), i.e. the right commutation relations in each case. 
Thus the quantization is compatible with the coalescence reduction scheme of the 
discrete Painlev6 equations. 

EX, xZn = y,  

d-P l l l ,~=1 /2y ,  ( f 2 = - y f 3 )  ford-Plv, a n d ~ = i [ U y + l / ( y - l ) l ,  ( . & = y / ( 2 y - l ) f 3 )  for 

3. ”be autonomous case: quantization of the Quispel mappings 

Once the proper quantization rule is chosen, it remains for us to prove, in the 
autonomous case, that there exists a quantity which remains invariant under the 
evolution of the quantum mapping. This quantity coincides with the classical invariant 
at the classical limit, where x, y are c-numbers, but may contain, in principle, quantum 
corrections. The case of fi = 0 (autonomous d-PI and d-PI,) was treated in detail in 
[ I l l .  It was shown there that such an invariant exists and, moreover, if one chooses 
the proper ordering of its terms the quantum corrections can be made to vanish. In 
what follows we will focus on the autonomous versions of d-PIII, d-Plv and d-Pv. 
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In the case of the autonomous d-PII,, ( f2 = 0), the evolution of the mapping writes 

X % b )  = - f l (y)x- '  (8) 
where classically f 3 ( y )  = a y 2 + p y +  y and f , ( y )  = y y z + ~ y + p ,  The commutation rule 
is xy = qyz and yx' = qx'y. This means that, in general, for any function F of y we 
have x F ( y )  = F ( q y ) x  and x 'F(y )  = F(S)x'. In order to simplify notations we will denote 
F ( q y )  by P and F($) by F. The evolution equation can now be written x'r& = -f! or 
x 'x=  -fif;'- W. Let us now (guided by the classical result, equation (2)) look for 
an invariant of the form 

K ~ X '  = A( x') ,  + BX'+ c (9) 

where A, B, C are quadratic polynomials in y :  A = a,y'+a,y + a, and similarly for 
B, C. We rewrite (9) as 

Kyx'= yzS2+  y S ,  + So (10) 

where Si = o,x"+ bjx'+ ci .  In order to prove that the invariance of (9) we multiply with 
xW-'x on the right and find, using (8) 

Kxy = qA W + qxB + qxz C W -  ' . ( 1 1 )  

This last expression should coincide with (10)  when one replaces (x', y )  by (y ,  x ) .  We 
obtain thus: 

q A W = S ,  (12a)  

qB = SI (126) 

q g 4 - ' =  S,. (12c) 

Equation ( 1 2 a )  defines W =  &/¶A, while (126)  is satisfied provided b, = q q ,  and 
qb,= c I .  Finally (12c)  introduces one further constraint cz = $ao. Thus from the nine 
parameters ai, bi, cj, five are free, one ( b , )  can be set to zero by a redefinition of the 
constant K, and the remaining three are expressed in terms of the previous constraints. 
Going back to the notation of (8) we remark that because of the q factor in (1Za) W 

i.e. q-dependent terms, enter not only the invariant but the evolution equation itself. 
This situation is not unlike the one for continuous systems [16] where it has been 
remarked that in order to preserve integrability upon quantization one must introduce 
quantum corrections in both the equations of motion and the invariant. 

In the case of autonomous d-P,, we start from a classical evolution equation 
x ' f , x - x ' f z - f , x + f , = O w i t h f , = m y 2 + p y + y , f 2 =  -yf3andf,=py3+(e-y)y2-p,and 
invariant a x Z y Z + P ( x 2 y + y 2 x )  + y ( x 2 + y 2 ) +  exy+ p = K ( x + y ) .  The commutation rule 
is here x y = y x + A ( x + y )  and y x ' = x ' y + A ( x ' + y ) .  Guided from the commutation 
relation and the form of the invariant (2), we introduce the auxiliary variable z -  x + y  
and z '=x '+y .  The commutation rules now become z y = ( y + A ) z  and z ' y = ( y - A ) z ' ,  
and, in general, for any function F of y: z F ( y )  = F ( y + h ) z  and z ' F ( y ) =  F(y -A)z ' .  

z' in the mapping we can rewrite it as 

^1-^..1-1 ... 2." . , , _ , I  , " , , - " . 2 ~ " . . ~ . . ~ / " . . . 2 ~ " . . ~ - . ~ - '  TI... ̂  *I.- .̂.̂ "*.._ "-.--A:.."" 
D l l U U l U  WLILG I" - ,,,q,\.yy T$yTp,\Uy Tpy' ", . ,,,"I LllLi qYL"L"'.' ~ULLC.,LLUI,D,  

___._ Here a g $ ~  - \"/e \"/!I! the notation F = F!y  + A )  and F = F ( y  - A). Introducing I and 

2% = ( y%- f l )  (13)  

2'2 = (y% -fi)f;' = w. 
or equivalently 

(14)  
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Thus the problem can be treated in a way parallel to the d-P,,,. We start with an invariant: 
Kz’ = y2s2 + ys, + so 

=  AX'^ + EX’ + c 
= Az”+ ( B  - a(y + - y) )z ’+  ( A y 2  - By + C). (15) 

We multiply on the left with zW-’z and bring all the zs to the left. However before 
comparing with the right-hand side of the first line of (15) we must bring all xs to the 
left (using also z2=x2+x(y+y)+yy) .  We find thus: 

( A + B ~ +  C) W-l=  S2 (160) 
S2(y + j )  +B- A ( y  + y )  = S, (166) 
S2yj +?(E -A(Y +y)) + A W = So. ( 1 6 ~ )  

From these equations we recover f3 = S, and we reconstruct f,. 
The situation for the autonomous d-Pv is quite similar. Here we have f2 = y A ( y ) ,  

f3 = (2y - 1)A(y) and the equation of motion reads: 2x’yAx - (x’+y)A(y + x) = B 
where B is a polynomial quartic in y .  The commutation rules are xy = qyx+A(x+y) 
and yx’= qx’y + A\(x’+y), where A = (1  - q)/2. Guided from these expressions and the 
form of the classical invariant (2) we introduce the auxiliary variables z = (2y  - 1)x - y  
and z ’=  x’(2y - 1) - y .  The advantage of the latter is that the new commutation relations 
read zy = (qy + A ) z  and yz’ = z’( qy + A ) ,  and thus for any function F we have z F ( y )  = 
F(qy+A)z  and F ( y ) z ’ = z ’ F ( q y + A ) .  The evolution writes now z’Cz=D, where 
C = A/(2y - 1) and D is rational with quintic numerator and 2y - 1 as a denominator. 
The analysis follows the same steps as in the case of d-PI, resulting again to quantum 
corrections in both the invariant and the evolution equations. We will not go into these 
(increasingly tedious) details here. 

The conclusion of the preceding analysis is that, as far as the autonomous Quispel 
mapping is concerned, there exists a consistent quantization scheme for the mappings 
corresponding to the autonomous versions of d-P, to d-P,. Moreover the quantization 
preserves integrability, i.e. there exists an invariant relation that is conserved in the 
quantum case, at the price of the choice of an ordering and the introduction of purely 
quantum correction terms in both the invariant and the mapping. Still the question of 
the quantization of the general symmetric 12-parameter Quispel map remains open at 
this stage. Thus the quantization of the autonomous d-P,, cannot be given by relations 
of the form ( 5 )  and more general rules must be devised. 

4. The non-autonomous case: quantization of the discrete Painlev6 equations 

The quantization of the discrete Painlev6 equations leads us to considering the non- 
autonomous case. Here no invariant quantity exists. On the other hand, the special 
integrability properties of the Painlev6 equations reflect themselves in the fact that 
there exists a Lax pair for them: 

La@”, @ “ + I  = (17) h- -  
dh 

The discrete PainlevC equation is then obtained from the compatibility condition: 

(18) 

d@” - 

dMn 
dh 

h - =  Ln+,Mn - M.L.. 
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In the quantized case, the ordering is important and must be respected throughout. 
Let us illustrate this point in the case of d-PI. (In what follows we will use the notation 
. f = ~ . + ~ , x = x .  and x = x . - , ) .  

In [SI we have presented a 3 x 3 matrix realization of the Lax pairs 
( A , - A ~ ) X - ’  1 o 

L =  h A2 C - X - - x  (19)  L : :3 ) M = (  ; : :) 
where A,=constant, A2=A+n/2 ,  A ,=A+f (n+l ) .  Using (18) one finds 

f +X + J = c + ( A ,  - A ~ ) x - *  (20) 

i.e. the usual form of d-PI without any quantum corrections. Moreover the expressions 
for L and M are the straightforward transcriptions of the classical ones: no ordering 
ambiguity appears. That this need not be always the case can be seen in the 2 x 2  Lax 
pair of Fokas et al [ 4 ]  for the same equation d-PI. Starting from: 

- p ( 2 x -  c )  ( X + P  - c ) x ’ f 2  
x + x  - c)x’f2 

- - I f 2  - - , f Z x ~ / ~  - X  

p ( 2 x  - c )  
M = (  ILX 

1 0 

and the compatibility condition: dM./dp= L,,+,M. -M,,L. (note the different 
definition of the spectral parameter!), one has to make specific choices for the order 
of the x, x, P terms. The order given in (21) is in fact the one leading to the correct 
d-PI. Indeed one finds, through the compatibility: 

(22) x-x+ ~ P l / 2 x P l / 2 - x 1 / 2 -  xx I f2  

whereX=-4p2x+x1f2(f+x+&-c)x1f2. Now,itcanbeshownthatif[x,f]= 1, then 
the right-hand side of (22) vanishes, whereupon the latter is integrated to X = n + K .  

Multiplying with x - ~ ’ ~  from right and left we obtain (20). 
While in the last case the choice of ordering was important, for the remaining cases 

of known Lax pairs for d-Ps the situation is quite simple. No ordering ambiguities 
exist and one obtains the quantum analogue of the corresponding discrete PainlevC 
equation in a straightforward way. Thus for the second d-P, we have 

where A I  = constant and A2 = n + c, leading to: 

Similarly, for d-PI one finds: 
A ,  x 1 

hx h 
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where Al=constant, h,=constant, A2=(n-1)/2+A and A4=n/2+A leading to 

f+x = c + ( A ,  - A ~ ) X - ' + ( A ~  - A ~ ) ( c  -x)-I. (26) 
Finally for d-Pll, we recall that the isospectral problem is of q-difference type rather 
than a differential one 

@ n W )  = L ( h ) @ n ( h ) ,  @ n + i ( h )  = Mn(h)@"(h). (27) 
The theory of such q-difference equations has been developed since beginning of the 
century, cf, for example, [17, 181. Recently, q-holonomic systems of q-difference 
equations have been seen to arise in connection with the quantum Yang-Baxter 
equations [19,20]. A compatible system of a qdifference equation and a discrete-time 
evolution as a Lax pair for a discrete PainlevC equation was first derived in [SI. The 
compatibility, in the case of (27), reads 

M n ( p h ) L ( h )  L + , ( h ) M ( h ) .  (28) 
Here we have, (recall x.f = qfx): 

A2 A z + X  x 

A 4  

A , ( A ~ +  ~ K X - ' ) - '  ( A + +  K ) ( A ~ x +  K ) - ~  

0 0 

A 3  A,+x r O I  

.=( hx O 0 

M = (  0 h 0 0 0 0 

0 0 
1 0 

A ~ ( X + ~ A ~ ) - '  (x+ A,)(x+ AJI 

A I  A1fKX- I  KX-' 

h(A\,+aKx-l)  hnKx-' 0 

with a 2 = p ,  A,=constant, A,=constant, A 2 = A a n - l ,  A,=Aa", A l = a A l - A 4 ,  A z =  

The quantized mapping is obtained through the application of (28). It reads 
A,-pAz ,  K = Can. 

.Z(K + A , x ) ( K  +A,x)-'x = ~ K ( x + A , ) ( x + A , ) - ' .  (30) 
We can remark at this point that (30) does not depend explicitly on the quantum 
parameter q. This should be related to the choice of a specific factorization of &, f, 
via (8) so as to obtain (30). Had we written (30) in the form a= W ( x ) ,  explicit 
q-dependence would have appeared. 

5. Cooclusious 

In this paper we have addressed the question of quantization of autonomous mappings 
and of the (non-autonomous) discrete PainlevC equations. The conceptual difficulty 
that is encountered at the very first stage of this work is that of the proper choice of 
the quantization rule. We have shown that for each type of the known Painlev6 
equations, we can obtain a consistent quantization scheme. The latter is inspired by 
recently introduced techniques related to the quantum groups. In the autonomous case 
we have shown that it was possible to define a mapping and an invariant (both 
incorporating quantum corrections) in such a way that the latter remains indeed 
invariant under the iterations of the former. We must stress, however, at this point, 
that this quantization procedure is not consistent with the most general Quispel map 
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(which would be the autonomous limit of the discrete Painlevt equation Pvl). More 
general quantization rules could be needed for the latter. In the non-autonomous case 
we have shown that the quantization is compatible with the Lax pair that ensures the 
linearization of each ofthe equations d-P,, d-P,, and d-P,,,. An interesting open problem 
is whether this holds also for d-Plv and d-Pv. We believe that once their Lax pairs are 
obtained in the commutative case, the extension to the non-commutative one will not 
present undue difficulties. Another interesting direction of research would be the 
extension of our approach to the multi-dimensional case, investigating the effect of 
the quantization approach on integrable lattices. 
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